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By a simple extension of the Method of Lines, the ordinary differential equation
solver VODPK may be used to solve a certain class of integro-differential equa-
tion systems (IDE systems). The problems are characterized by a pair of advected
frequency-dependent quantities, coupled to a population variable whose rate includes
a spectral integral in one space dimension. We have found that with an appropriate
choice of preconditioner to aid in the convergence of the linear iterations, an extremely
efficient method is obtained for the solution of these types of IDE system problems.
We discuss the semidiscretization process and the formation of the preconditioner in
some detail. Finally, we present an application of the techniqug2001 Academic Press
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1. INTRODUCTION

The modeling of laser systems often requires computational models in which the int
sities are functions of wavelength. The intensities and the laser level populations all v
with spatial position and with time. When the population rate equations involve an emiss
integral over the relevant spectrum, then the equations form a system of integro—differel
equations (IDEs). We were faced with a problem of this sort, for which a one-dimensio
spatial domain is sufficient to model a laser oscillator bounded by two mirrors. We be
preparing a solution approach based on discretizing in space and frequency and usir
ordinary differential equation (ODE) solver for the time integration—an approach that
highly successful for similar systems of time-dependent partial differential equations.
the process, it became apparent that the approach is valid for a somewhat more ge
class of 1D problems than for the laser oscillator in question. That class of problem:
specified in the next section. The key feature is the coupling of two wavelength-depenc
functions, representing physical quantities (e.g., intensities) that are advected in oppc
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spatial directions, together with a third quantity (e.g., a population) driven by a spect
integral as well as other source terms. With the same formalism presented here, one
also solve considerably more general forms of IDE systems.

The use of a semidiscretized system (with time continuous) and an appropriate O
algorithm for the time integration is called the Method of Lines [1] and is outlined for thi
problem class in Section 3. The method derives its power from the fact that problem-spe
discretizations need only be done in space and (in this case) wavelength, while nume
powerful ODE solvers are available to carry out the time integration. The issue of tir
discretization errors is removed from the modeling effort, being reduced to the selectior
tolerance inputs to the ODE solver. The use of the Method of Lines to solve IDEs is not n
[2]. However, we believe the present treatment offers a significant advantage over previ
methods in our choice of an efficient, stiff-ODE solver.

The ODE systems that arise here turn out tcstiff meaning that they include one or
more strongly damped (or rapid decay) modes, whose time scale is much shorter thar
time scale of the solution itself. This stiffness necessitates the use of implicit methods
the integration of the ODE systems. However, the large problem size dictates the us
iterative methods for the linear systems that then arise. Then besides choosing a sui
ODE solver, success depends on providing a preconditioner to aid in the convergence o
linear iterative method. We have developed a product preconditioner for the stated clas
problems, which has proven to be fairly simple to implement, and yet extremely effective
the solution. Itis inspired by the idea of operator splitting, but does not sacrifice the criti
element of error control. This preconditioner is developed in Section 4.

In Section 5, we present the application that led to this work. The specific problem
interest involves a laser with a solid-state gain medium. The laser cavity has a mirror wh
reflectivity is a nonlinear function of the incident light intensity. The solid-state gain mediu
has a fluorescence decay time (200—a@0) that is significantly longer than the time re-
quired for the radiation to build up inside the laser resonator. For this reason, this type
laser typically exhibits transient instabilities at the onset of oscillation, known as relaxati
oscillations, which damp out as the lasing process proceeds. With a nonlinear mirror, the
laxation oscillation produces temporal spikes that can be significantly enhanced and dc
damp out. There is interest in this type of resonator for a solid-state laser since a nonlir
mirror based on stimulated Brillouin scattering (SBS) can potentially provide the conjug
tion of the transverse modes of the counterpropagating radiation in the laser. Furtherm
the peak intensity enhancement provided by the nonlinear mirror could improve the las
application in certain materials processing applications. A numerical model that helps ta
the design of the laser with respect to the peak output power and the temporal width
spacing of the output pulses would be a valuable tool. The solution of the problem follo
the approach presented in the preceding sections, with some economies gained as a
of certain features of the semidiscrete problem. Solutions are shown for the simpler c
with the nonlinear effect turned off, then with it turned on.

2. PROBLEM STATEMENT

We are interested in a system of integro-differential equations (IDES) involving (;
independent variables) one spatial variableén an intervalx, < x < xgr, a wavelength
A, and timet. The dependent variables consist of two frequency-dependent quantities,
andy~, and a frequency-independent populatidbh, The quantitiesy™ andy~ undergo
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advection in the rightward and leftward directions (respectively) at a given spest
also reaction rateR*. The rate equation for the populatioN, includes a decay raté&,
which is an integral over wavelength of the syfm+ y—, and a combinaton of other source
and sink terms denotel. More specificallyy™ (x, A, 1), y~ (X, A, 1), andN(x, t) satisfy
the following IDE system:

ayt/at + vdyt/ax = RT(y", N, }) Q)
ay~ /ot —vdy /X = R (Y™, N, A) (2)
AN/t = P(N,x,t) =Ny " +y]. (3)

The coefficient and functionsR* andScould also depend anandt, but for brevity here,
this dependency is not shown. Boundary conditiong®dare posed in which each is given
as a function of the other at the appropriate endpoint, that is,

YT, AL ) = fLly (e, +, D] YT (KR, AL 1) = fRIYT(XR, *, D], 4)

where each functiorf_, fr is an operator on the functioyi* that may involve its values
at all wavelengths.. To complete the problem statement, initial conditigrngx, A, 0),
y~ (X, A, 0), andN(x, 0) are to be given.

3. METHOD OF LINES APPROACH

The idea behind the Method of Lines approach to this IDE system is to discretize it
the space and wavelength variables, giving a system of ODEs in time that can be integr
by a suitable ODE solver. Specifically, suppose that a mesh mftervals is placed on the
x-interval, having thevl + 1 meshpoints

XL = Xo, X1, ... s XM-1, XM = XR.
Likewise, discretize the wavelength interval irfopoints, as
ALy ooy AK.

Neither of these meshes need be uniform. At each pgjaind each wavelengity we have
discrete unknowng;f , andy;, ., and at each, we have an unknowhl,. At the interior
mesh points (0< m < M) we obtain an ODE for eao}rfﬁk by replacing the advection term
in (1) and (2) by a suitable finite difference expression. For simplicity, we will use a simg
two-point upwind difference here, although a more sophisticated discretization (possi
even of finite element type) could be used instead. Thus the ODEs from (1) and (2) are

dym/dt + v(Ymk — Ym-1.)/A%m-1 = RT (Y N, 1), (5)
dYmk/dt = v(Ymi1k — Ymi)/A%Xm = R™(Ym ks Nm, 1). (6)

To discretize the population equation (3), we must represent the integral op8ratc
in terms of the discrete unknowns. For this we use the Trapezoid Rule, though a i
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complicated quadrature could be used if needed. Thus in the case of a uniform wavele
mesh, we use

K-1

f/2+ ) 0w+ f(hk)/2 (7)

k=2

Ak
/ f(O)dr = Ax

A1

applied to the integrand in the operatosS. If the resulting value o at x, is denoted by
Sh, then we have an ODE fad¥,, at each mesh point (including the boundaries) of the forn

dNe/dt = P(Nm, Xm, 1) — NS (8)

Finally, the boundary conditions (4) become equations in the discrete variables of
form

Yok = ficor. -+ Yox) and Yy = frYm 1 - Yk)- (9)

These equations complete the posing of Eq. (3 at 1 and of Eq. (6) am= M — 1.

We now have a “semidiscrete” system, i.e., a set of ODEs in time which have be
discretized in space and wavelength. This set consists of three subsets of the above eque
namely: (&) Eq. (5) fom=1,..., M; (b) Eqg. (6) form=0,..., M —1; and (c) Eqg. (8)
form=0,..., M. We write this system in a more compact form as follows. Atiitia
spatial point, define two vectors of sikg,

)ﬁ = (Yrjﬁ,l» s Y$,K)T~
Then atx,, we have a block of dependent variables,
Ym = (Y$v y,;, Nm)T,

except that at the endpoints = 0 andm = M one of the two vectoryz is absent, by
virtue of the boundary equations (9)

Yo= (. No)". ym = (¥ N
The full dependent variable vector is
Y=o, .-, ym)' (10)
Its size isN = 2KM + M + 1. The full set of ODEs can be written simply as
Y =dY/dt = F(t,Y). (11)

The vector of initial valuesy (0) = Yy, is given, and we seek the solution of the initial value
problem on some time interval 8 t < tyax.

An important property of ODE systems that arises in this manner is “stiffness.” An OC
system is stiff if it includes one or more rapid decay modes whose smallest time cons
is very small compared to the time scale of the solution of interest. In discretized spatic
dependent problems, stiffness often arises from the discretized spatial operator invol
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and it can also arise from the other rate terms present (su@ dsere). This issue is

important because if a nonstiff time integration method is used to solve a stiff system
must be restricted to step sizes that are much smaller than necessary to resolve the so
accurately. The application given here is quite stiff, as we have learned by doing just s
an experiment. In our case, the source of the stiffness can be traced to the advection te

The solutions also have oscillatory modes, which can take the form or periodic narr
spikes in time. But the time scales on which these spikes are resolved are still much lo
than the time scale of the most rapid decay modes. The decay modes are absent i
solution, except for an initial fast transient, but their presence at all times in the OI
system itself makes it stiff.

Fortunately, a number of solver packages are available for the solution of stiff OI
initial value problems. Some are more suitable than others for the case of large syst
that arise from PDEs or (as in this case) IDEs. The solver we have chosen is VODPK |3
“Preconditioned Krylov” variant of the general-purpose solver VODE [4]. Our reasons f
this choice will be made clear after the following short summary of these solvers.

Both of the solvers, VODE and VODPK, include two basic humerical methods for OC
systems (11). One is based on Adams—Moulton formulas and is useful only for nons
problems. The other is based on the backward differentiation formula (BDF) and is
one of interest here. Both are implemented in a variable-step-size, variable-order form.
BDF method uses the formulas

q
Yn = Zan,iYn—i + hn,Bn,OYna (12)
i=1

where theN-vectorY, isthe computed approximationYdt,). The step size (which can vary
at every step) itn = tn — th_1, and the coefficients,,; andp, o are uniquely determined
by the ordeq and the history of the step sizes. The integration beginsqvithl, and after
thatq varies automatically and dynamically between 1 and 5. SthcdenotesF (t,, Yn),
Eqg. (12) is an implicit formula, and the nonlinear equation

G(Yn) =Yy — hnﬂn,OF(tna Yn) —a, =0 (13)

must be solved fol, at each time step, whesg = S, an; Y,_i. For stiff problems, a
Newton iteration is used to solve (13), and for each iteration an underlying linear syst
must be solved. This linear system for the Newton correction has the form

A[Yn(r+1) - Yn(r)] = _G(Yn(r)), (14)
whereY, is ther th Newton iterate approximating,, and

A=2C g g
oy T T

W, Y = hnﬂn,0~
An initial guessYy () (also accurate to ordey) is easily formed explicitly from past values
Yn_i. Depending on the particular method options chosenNthe N matrix A may only
be an approximation tb — yJ.

The integrator computes an estimate of the local errors at each time step, and strive
keep these below a certain tolerance. This error control uses a mix of relative and absc
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tolerance terms, where the tolerances themselves are supplied by the user. During the ¢
of the integration, VODPK will vary both the step sikg and the ordeq in an attempt to
produce a solution with the minimum number of steps, but always subject to the local el
test. See [4] for details.

The VODE solver uses only direct methods for the linear systems (14), and is preclu
here because of the large size of our problems. In contrast, VODPK uses an iterative met
in which costs can be kept at a tolerable level by exploiting the structure of the problem. T
iterative linear system method is based on the GMRES (Generalized Minimal Residt
Method [5], one of the so-called Krylov subspace iterative methods. The actual algorit|
in VODPK is called SPGMR: Scaled, Preconditioned GMRES [6]. The user of VODP
may precondition the system on the left, on the right, or on both the left and right. Ea
value of the preconditioner is saved for repeated use over as many Newton iterations
as many time steps as possible. For similar problems in the past we have used LSOI
[6], an analogous preconditioned Krylov variant of the solver LSODE. But here we cha
VODPK over LSODPK because the variable-step formulas underlying VODE and VODF
are likely to be more robust for these oscillatory problems than are the fixed-step-interpo
formulas in LSODE and LSODPK.

4. PRECONDITIONING

Although not required as input to VODPK, a preconditioner is usually necessary f
efficiency in the solution of the linear systems (14) that arise, which we write here simg
as Ax=b. A preconditioner is a matrixP that approximatesA in some sense
(possibly only crudely), but for which systeni®x = b can be solved reasonably effi-
ciently. Given a preconditiond?, we apply the GMRES method either to the equivalen
system(P~tA)x = P~1b (for left preconditioning), or to the systerAP~1) Px = b (for
right preconditioning). In addition, we scale the iterative method, to account for differir
orders of magnitude, and possibly different physical units, in the various components
the vectors, etc. Here a diagonal matri® is defined by way of tolerances supplied by
the VODPK user, such that any error-like vectds measured in terms of the weighted
norm| D~1x||,. Then in the SPGMR algorithm, the GMRES method is actually applied t
the systemA% = b in which

A=D'P1AD, %=

“Ix, b= D'P~!b (left preconditioning)
A=DAPID, x= b

~1px, b= Db (right preconditioning)

The characteristic feature of a Krylov subspace method is that the system matri
never needed explicitly, but only as an operator; that is, only its action on any given vec
is needed. Thus the SPGMR method requires the action of the n#gtox the value of
matrix—vector productéw. The action of the factor® andD L is trivial. Using the relations
A=1—-yJ andJ = 9F/3Y, we approximate the action ok by way of a difference
guotient approximation,

Av=v—yJv, Jux[Ft Y +ev)—F,Y)]/e,

for a suitably smalk. What remains is perhaps the most difficult part of the SPGMF
method—defining and computing the actionRf!, which means solving linear systems
Px=bh.
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4.1. Jacobian Structure

To approximateA = | — y J, a good preconditioner must include the numerically dom
inant contributions to the Jacobidn but in a manner that permits efficient solution of the
corresponding linear systems. To balance these two conflicting demands in the case
large ODE system, it is essential to identify and exploit the sparsity structureradr the
semidiscrete IDE systems hetkhas contributions from the advective transport terms, th
interaction terms on the right-hand side, and the boundary conditions. More specifice
writing

J =00, Y1, -, YM)/9(Yo, Y1, - - -, YM),

we regard] in block formwithM + 1 blocks in each direction, the dimension of each block
being KX + 1 (in the interior) oiK + 1 (at the edges). The diagonal blocks= 9Ym/9Ym
each have a bordered-diagonal structure,

B0 g2

In = 0 Jr%’ J,%’ O<m< M),
NS KR AL

(15)
o Jo N
J = , Iw = .
( B % ) ( VYRR )

HereJ1" andJi- are diagonal matrices of sixewith element$ R* /dy* — v/ Axm_; and
dR™ /3y~ — v/ AXm. J2+ and J2- are column vectors of siz& with elements) R/ N.
J3 is a row vector of sizeK with elements—Npd y2/0y2. (The same row vector
appears in two positions id, becauseS depends only on the sugi' =y + y,,,.) Jiis
the scala® P (Nm, Xm, t)/0Nm — Sy.

The off-diagonal blocks ofl come from the advection terms and from the boundar
equations. Those from the advection are diagonal matrices oKsize

AL =dyn/oyh i 2<m< M), A, =08Yn/0Ym0<m<M-2), (16)

with elements/Axy_1 andv/Axqy,. Those from the boundary equations (9) are matrice
of sizeK,

v
AXm—_1

dfr(YM)/0YM>
(17)

. - v - - .
BL = 9Y1{/0Yo = 3 -91L()/% . Br =¥ 1/0¥h =

which may well have a nondiagonal structure.

4.2. Forming a Preconditioner

A natural and powerful way to form preconditioners for complex systems is to form
preconditioner for each of two or more parts of the problem, and multiply these togett
The resultingproduct preconditioneis the product of matrices of the form— »J, in
which each factod includes certain parts af, and when added together the matrides
include all of the numerically important contributions do This idea has been explored
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extensively in [6] for the method of lines solution of reaction—transport PDE systems. F
the present system, although there are many choices for the splitting of the Jacobian
have made the specific choice

P = PagvecPhorder = (I — ¥ Jadved (I — ¥ Joorder) (18)

where

e Javecincludes the advection contributions, an approximation to the boundary equati
contributions, and the self-couplinds®, while

e Jhorder IS @ block-diagonal matrix with bordered-diagonal blocks consisting of th
contributionsJ2*, J3, and J?.

It is the factorJyorger Which includes the contribution of the spectral intedsah Eq. (3).
SinceP = | — y (Jadvec+ Jborder) + O(¥2), andy is proportional to the stepsitg, we
can expecP to be a good approximationty= | — y J atleast for small enough stepsizes.
In fact, we find that it performs very well for large stepsizes also. Further justification f

this choice can be found by looking at the error tepflagveclborger FOr this, consider
the problem with the dependent variables ordered as(Y*, Y~, N)T , where eacty*
consists of all thg/rﬁk, andN consists of all theN,. Then the Jacobian takes the block
form

Ji 0 Jis
J=10 J» I
Ja1 Jz2 Ja3

In this ordering, the chosen splitting corresponds to

Ji1 0 0 0 0 Ji3
jadvec = 0 J22 0], jborder = 0 0 J23
0O 0 O J1 J2 Js3

The product of these matrices,

0 0 Ji1dis

jadvecjborder: 00 322J23 P
00 0

has nonzeros in only two of the nine block positions. This suggests (but does not prc
that the error in the corresponding product preconditioner may be smaller than for ot
splitting choices, which produce nonzeros in other blocks of the product.

For all of these Jacobian contributions, it is sufficient to use approximations to the ti
Jacobian elements, because of the way they are used within the GMRES iteration. More
it can be highly beneficial to do this if the savings in computation and/or storage outweig
the increase in number iterations required for convergence. In our case, for exampl
might be useful to replace the true value of the boundary equation Jacobian Bloeksl
Br in (17) by sparse approximations to them, or to replace the diagonal tRmgy*
by less costly approximations, depending on the complexity of the functions involved.
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4.3. Solving the Preconditioner Systems

The solution of the preconditioner linear systems is splitinto two phases. First, we evall
the factors ofP and preprocess them in preparation for solving the linear systems lat
Then each linear systeRygvedPoorderX = b is solved, by solving two systems in succession
using the data saved from the preprocessing phase. The VODPK solver calls the rou
that execute these two phases as needed, and it calls the (more expensive) preproce
routine much less frequently than the solution routine.

For the block-diagonal matrix

F>border = diag{BO, Bly ey BM},

the preprocessing consists of performing an LU factorization of each BgciBy con-
struction, we hav@n, = | — y I border, WhereJm porder iS Jm With the diagonal piecedl*
removed. (We usé here to denote the identity matrix of the appropriate order, which me
vary according to context.) This matrix actually hasaadered-identityform

1 a
By = . a'n
bl .. bn Cc

of sizen + 1 with n = 2K or K. The LU factorization of this matrix is simply

1 1 aq
. . . n
By = L L a W|thc=c—21:a;bi.
bl bn 1 c

Solving a linear systerRyqgerX = b amounts to solving the blockB,xm = by, which is
easily done with backsolve operations using the saved LU factors.

For the factorP,qveo @ block-LU treatment is possible, but for this it is helpful to look at
areduced and reordered form of the system. Noteh@t.does not involve the variables
Nm at all. The corresponding equations in the system.ex = b have the trivial form
x' = b' (using superscripts to denote components), and so we can drop those compor
from consideration. Also, because the couplings from advection are in alternate directi
(Yhtoys_, andyy, to yi., ), the structure oPaqvecis greatly simplified if we consider, for
the purposes of solving this system, the ordering

Y = (Y12 Yzeos Yot Yan Vi - Vi o) (19)

of the unknowns, instead of that in (10). With this ordering for bothitend x vectors,
and the components correspondind\ig dropped, the linear systeRygeX = b takes the
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form FTadvec)?z BWith I:Tadvec: I — J/J_advecand
J- A
Au-2
Ji . Br
J_advec: J|\1/|+ A4[\;| s (20)
A;
B
Ay Jo~

in terms of the matrix blocks defined in Egs. (15)—(17). This MaReixecis nearly a block-
bidiagonal matrix, differing only in the presence of the corner blégk Such a matrix is
calledbordered-block-bidiagonaFor a general matrix of this form,

D1 C

H = (21)

Dh-1 Cna |’
Cn Dn

a block-LU factorization can be easily performed, provided that allthare nonsingular.
The resultis

D, | Cj
H= - , 22
anl I r/‘l_l ( )
E_‘]_ o En_]_ En |

where the blocks in the factors are given by

CJ,_ = Dl_lC]_, ey Cr/'l—l = DrT,l]_Cn—lv
E]_ - c:n7 E2 - _ElC:/Lv ey En7]_ - _En72Cr/172s (23)
En = Dn - En,1C;1_1.

In our casen = 2M in (21), and all the matrix blocks ané x K. Furthermore, all the
blocks inH are diagonal except possibly f@y_1 = —yBr andCyy_1 = —y B, and
this fact can be exploited to reduce greatly the cost of the operations in (23). Once"
block factorization is done, and provided also that the blBgks nonsingular, solving a
linear systenP,q,ecX = b reduces to block-backsolve operations in the blocks afidx
corresponding to thg. These can be carried out without any explicit reordering of the
vectors, simply by observing the order of the blocks in (19).
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5. AN APPLICATION

As an application of the formalism developed in this paper, we shall take an example fr
laser physics and model the behavior of a laser oscillator with a nonlinear mirror on «
end. Such a situation is encountered when one constructs such an oscillator with a pt
conjugate mirror [7, 8]. These types of lasers are useful when it is desired to have an ou
beam free from aberrations caused by the laser medium, and usually the phase conjug
is achieved through a nonlinear process such as stimulated Brillouin scattering (SBS)
keep the application simple, we shall limit our model to a rate equation/intensity formalis

5.1. Problem Statement

The geometry for the laser is shown in Fig. 1, where, for simplicity, we shall consider or
one-dimensional propagation of the laser beam. The laser cavity itself has lerayit the
two (linear) mirrors defining the cavity have reflectiviRyg andR,. All physics of the SBS
process is grouped into an intensity and wavelength-dependent refledivityyhich is at
the same location d8;o. The laser medium has alendthand is pumped uniformly in space
at a time-dependent intensity (W/cm?). Within the cavity are circulating spectral inten-
sitiesi;f (i,7) (W/cm?-nm), which move in the positive (negativexdirection. In operation,
laser oscillation builds up between the cavity mirrB%g and R,. Once the intensity builds
up above a threshold fdR;;, oscillation starts taking place between that mirror &ad

In SBS, light that gets reflected back into the cavity is wavelength-shifted by an amo
equal to the Stokes shift of the SBS medium. Consequently, it is important to formulate
rate/transport equations describing the laser to explicitly take into account the waveler
dependence of the emission cross section. As a representative laser medium, we shal
sider Nd-doped gallium gadolinium garnet (Nd:GGG), which has an emission wavelen
of 1062 nm. To further simplify the analysis, we shall assume Nd:GGG acts as a four-le
laser. In general, the decay times from the pump bands to the upper laser level, and 1
the lower laser level to the ground state, are at most a few nanoseconds (and typically n
more rapid) [9]. Since the time scale of interest is on the order of §0nve only need
consider a rate equation for the upper laser level (which is directly populated by the pun

In dimensional form, the rate and transport equationd\igix, t) andif(x, A, t) read

dN2  aaNolp(t) Ny N2~1O‘7/
at  hyp te hc Je

Mos(A) (5 +iy)dA,
mband (24)

3iF naif 4 -
ax Tt T os(MNa[ig" +ig(M)](La/Le) —aij(La/Le),
10
Ry § 4 4 |
) ———
— D
Ryp Ry
0 L, L, —»x

FIG.1. Geometry for the laser.
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where N, is the population of the upper laser level (Ch1 Ny is the population of the
ground state (assumed constant, equal to the doping dersit/Planck’s constant (J-s);
vp is the pump frequencys, andos are the absorption and emission cross sectiond)(cm
tr is the fluorescence lifetime (sD@i are the forward and backward-going light spectral
intensities (W/crd-nm); andn is the refractive index of the laser medium. The integral ir
the first equation is performed over the emission band. The factdr(&6/nm) allows us to
express wavelengths in nm, while the spectral intensity has units fAtiomL , andL . are
the lengths of the active region and the cavity respectively (cm)jécd is the effective
noise source (W/cfanm), which initiates the lasing process. For the simple applicatio
given here, we shall také to be a constant, independent of position or wavelength. Finally
the factora(cm™) represents any losses in the active medium.

Inreality, there are many linesin tf‘lEg/z — 4I11/2 transitionin Nd:GGG [10]. However,
to keep the application simple, we shall only consider the emission at 1062 nm in th
calculations. The emission lineshape is taken to be a Gaussian with pealkoyaine
FWHM Ax(=+In2 2~ 0.83 nm):

os(A) = opexp[—4In2(x — Ag)?/AA?].

Instead of dealing with the dimensional form of Egs. (24) directly, it is more useful to ce
them in nondimensional form. The details of the nondimensionalization of the equatic
are given in the Appendix. In terms of a dimensionless coordinaseying between 0 and
1, a dimensionless time and a dimensionless wavelengthvarying between\, andA,,
the normalized dependent variables a(&, t) andygt(g, A, 7). The resulting model may
be written simply as

0 Au 2
M _ = [1+ / eyl +y;)dA| . (25)
at A¢
a + + ,
iaig“rﬂ% = yne M (yF + vi) — o'yi, (26)

wherea’, B, y, andys; are constants. We have takan = —2 andA, = 2 here.
Now consider the boundary conditions. At the left boundary, in terms of the origin
variables, we have

iF(Xx=0,A,t) = Rio(1 — Ryp)i; (X =0, A, t) + Rai; (x = 0, A +dis, 1), (27)

wheredas is the Stokes shift. HerBy; is a reflectivity function that depends on the total
intensity of the left-going laser radiation at the left endpoint,

o = / i, (0, 1) dA (Wicn?).
emband
In terms of the normalized intensity , Ry is a functionRy1(Y, ") of the normalized total
intensity
Ay

Y. =1 /lsat= y; (0, A)dA, wherelgay = hvg/oote, (28)

Ay
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andvy = 107c/A¢ is the center frequency of the laser emission. For this function, we us
a model that has been heuristically found [11] to fit well to observations, namely

Ru(S) = {;/;;1 6.12 fors > .Sth (29)
0 otherwise

wheresy, is a dimensionless constant related to the beam area and the SBS threshold pc

Note that the expression (29) neglects the initial turn-on transient. For liquid SBS mec

this assumption is justified insofar as the Brillouin scattering lifetime is on the order

1-2 ns. Thus the left boundary condition (27) can be written

Y, (0. A) = Rio[1 — Rua(YDIY, (0. A) + Rua(YD)Y, (0. A +dA) (A < Ay —dAg)
(30)
Y, (0, Aw) = Ruo[1 — Rua(YOIy; (0, Av)

for all normalized times. In the discretization, we will choose discrete wavelengths suc
that Ax, 1 — Ak exactly equals the nondimensionalized Stokes shift. Then in the dis-
cretized form for (30), wherg, (0, A) becomesy, ., the shifted valuey, (0, A + dAs)
simply becomesy, ;. The integral definingr” in (28) is evaluated by means of the
trapezoidal rule, as in (7).

The boundary condition at the right end is simply

ip(x=1Le A1) = Raif (X = Le, A, 1), (31)
which may be written in terms of the normalized quantities as
Yr (L A) = Ry (L A) (32)

for all normalized times.

The initial conditions that we pose are simply flat zero values at tiree0: (&, Tt =
0=0y/¢At=0=y,( A 1=0=0.

To complete the specification of the nondimensionalized problem, we used the follow
numerical valuesyp(t) = ypo = 0.018 a constantp’ = 0.046 8 = 1.35x 1074y =
600, yy; = 7.3 x 107%; yy = 8.8 x 1077; andsy, = 0.073.

5.2. Solution

The system (25) and (26), together with the boundary equations (30) and (32), cle:
fits the general form of the IDE system (1)—(4), w'yﬁ, n, €, 7, and A taking the roles
of y*, N, x, t, andA. As detailed in Section 3, we used the method of lines procedure
discretize this system. In both space and wavelength, a uniform grid is appropriate for
problem. We found thaM = 50 intervals were sufficient to resolve the spatial variation
Our wavelength mesh size was based on the chosen range i from the centekg of
the emission spectrum. Coupled with the Stokes shidt@f= 0.01 nm, this determines the
valueK = 201 for the number of discrete wavelength points. The corresponding normali:
shiftisdAgs = 0.02. The integral on the right in Eq. (25) is evaluated using the trapezoic
rule (7). The total size of the resulting ODE systenNis= 20, 151.
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We solved the ODE initial value problem with the VODPK solver in the manner de
scribed in the preceding sections. We used a preconditioner matrix of product type
shown in (18). Although left or right preconditioning would be equally valid, we chos
right preconditioning based on experience with previous problems of this type. In our ce
because the spatial mesh is uniform ang 1/8 is constant, some simplifications occur
in the matrix J agvec Of (20). The two blocksJ1* and J1- are equal, and each blodk:
is a scalar matrix(8Ax) "1l (a scalar multiple of th& x K identity matrix). The block
Br is also a scalar matrixR>/BAX) |, resulting from the simple reflective right boundary
condition (32). The blockB,, arising from the Jacobian of the right-hand side of the lef
boundary condition (30), is actually a fldl x K matrix. However, it is well approximated
by theupper bidiagonamatrix

— 1

Rio(1 — Ri1) Ru
BL=—— -
- BAX

: (33)

with constant values on the diagonal and superdiagonal. As a result of these featt
in the block-LU operations in (23), we do not need to store and save explicitly mal
of the matrices. Of the matrix blocks shown in (22), we actually store onlyMhe 1
distinct diagonal matriceBp, (overwriting these with their inverses), the bidiagonal matrix
Ci.=-y Dg,j_l B_L, the diagonal blockgs, ..., Exv_1, and the bidiagonal matri,y, .
From these, the solution of preconditioner linear syst®gg.x = b is easily carried out.
The storage cost for the entire preconditionerigk6+ O(M) + O(K) (about N) real
words.

The equations in this application are sufficiently uncomplicated so that the vario
Jacobian blocks shown in (15)-(17) and (33) could be evaluated analytically. Howe\
for a more complicated problem, this might not be feasible, and a difference quotient
cedure could be used instead.

Once the model representation and the preconditioning were implemented in a For
user code, we obtained solutions with VODPK easily. We have run a number of cases,
will show here the results for only one. In what follows, we have used vdRigs- 0.4
andR, = 0.25.

Figure 2 shows the temporal histories (for the first 1&) for the case where the SBS
mirror is turned “off,” by makingsy, in Eqg. (29) extremely large. The solid curve is the
output laser light intensity, defined &% — R2)Isatfyzr(§ =1, A, t)dA. Also shown in
the figure (dashed curve) is the gain coefficients ooNon(é = 1, 7) = ogNa(L¢, t). In
this regime, the laser oscillates solely between the two linear mirrors and the gain coeffic
(and the laser intensity as well) exhibit relaxation oscillations (see, for example, [12]).
long times, the system settles down to its steady state, at which the output light intensit
0.028 MW/cnt and the gain coefficient is 0.039 ch

When SBS is turned “on,” the temporal histories of the same two variables are as show
Fig. 3. Note now that the presence of relaxation oscillations has disappeared, and the o
consists of a sequence of evenly spaced spikes. Note also that the intensity/spike is rou
a factor of 10 times greater than when SBS is off. Examination of the gain coefficient a
function of time shows that there is greater extraction of the energy in the upper laser le
These characteristics are in agreement with experimentally observed results [13]. V
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FIG. 2.

SBS off, there was some residual light in the cavity, as may be seen by the ever-increa
baseline in Fig. 2. With SBS on, there is essentially no light between pulses, as indice

by the zero baseline.

Finally, in Fig. 4 we show, on an expanded time scale, the laser output intensity and ¢
coefficient for the first pulse in Fig. 3. We see that the FWHM of the pulse is about 240
which is entirely consistent with the amount of energy extraction and the relatively lo
cavity. The laser model considered in this application assumes oscillation on a single |
gitudinal mode. Consequently, mode-beating effects (which would show up as oscillati

in the pulse of Fig. 4) are absent.
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FIG. 3. Laser light history (solid curve) with SBS turned on. The dashed curve is the gain coefficient.

Gain coefficient (cm™)

281

Laser light history (solid curve) with SBS turned off. The dashed curve is the gain coefficient.
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FIG. 4. First SBS pulse on an expanded time scale. The dashed curve is the gain coefficient.

Overall, the VODPK integrator has performed very well on these problems. The case |
described, wittM = 50 and SBS turned on, was integrated to a final timg.gf= 400 s
(final normalized timersng = 5/3) on a Sun 296 MHz UltraSparc, with a total memory
requirement of 8 million double precision words. The performance statistics for this run :
shown in Table I, in the column undbt = 50. The step count NST may seem high, but wa:
fully appropriate for the accurate resolution of the laser oscillations. The average num
of Newton iterations per step (NNI/NST) and of linear iterations per Newton iteratic
(NLI/NNI) were both only slightly larger than one, and each preconditioner evaluatic
lasted an average of 7.9 steps (NST/NPE). These figures indicate that the BDF integre
method is performing very well and that the quality of the preconditioner is extremely hig

If one doubles the mesh size kb = 100, the solution does not change significantly; the
statistics are given in the last column of Table |. For this case, the average number of Nev
iterations per step (NNI/NST) and of linear iterations per Newton iteration (NLI/NNI
remain about the same as fdt = 50. However, the number of steps per preconditione
evaluation (NST/NPE) increased from 7.9 to 8.7.

The presence of periodic fine structure in the time history of the solution might sugg
that the problem may not really be stiff. To settle this question, we made a run for t

TABLE |
Performance Statistics for SBS Model with Two Mesh Sizes

Mesh sizeM 50 100
NST=no. time steps 4535 5631
NFE=no. evaluations of right-hand side functién 12,364 15,020
NPE= no. evaluations of precondition& 573 648
NNI = no. nonlinear (Newton) iterations 5487 6724
NLI =no. linear (SPGMR) iterations 6873 8292
NPS= no. preconditioner linear system solves 11,706 14,251

CPU time 4.96 min 13.5 min
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caseM = 50 with the nonstiff method option in VODPK. This uses variable-order Adams
Moulton methods, and involves no linear algebra. This run took 878 min on the sa
machine (177 times that of the stiff method run), 1,540,920 steps (340 times higher),
2,923,419%F evaluations (236 times higher). The average cost of a nonstiff step is lower tf
that of a stiff step, but only by a factor of about 3407 = 1.9 (attesting to the effectiveness

and efficiency of the preconditioned iterative method). Outweighing this is the restricti
on step sizes forced by stiffneds,/NST~ 0.26 ns), which raises the total cost for the
nonstiff method far above that of the stiff method.

6. CONCLUSIONS

We have shown how a simple extension of the Method of Lines may be used to sol
certain class of IDE systems. The success of this method lies in the choice of an effic
ODE solver to handle the (usually stiff) system of ODEs. Emphasis has been placec
the formation of the preconditioner in product form, the use of which greatly improve
the efficiency of the ODE solver. The spectral integral in the problem has its impact in
second preconditioner factor, which consists of bordered-diagonal matrices.

The philosophy behind the product preconditioner is similar to that in operator splitti
(or fractional step) approaches to time-dependent problems, wherein each fractional
involves only a part of the problem. The difference here is that the approximation of t
Newton matrixA by the productP is done within a Krylov iteration for the solution of a
linear system, within a Newton iteration for a nonlinear system, within an integration tin
step, and each of these three iteration levels involves a convergence test to control the ¢
being committed. In contrast, traditional operator splitting involves no iteration and no er
control. Certainly, other choices for the product preconditioner are possible, using differ
splittings of the Jacobian, or using more than two factors. However, because of the suc
we have had with the present choice, we have not explored alternatives.

Besides the application presented in the previous section, other areas of laser physic
can be addressed with the same solution methodology include mirrorless lasers, ampli
tion of broadband laser radiation, and gain-switched laser oscillators. It would be eas
extend the solution approach to systems with multiple population variables; the bordel
diagonal matrices would then have borders wider than one, but an analogous LU solu
could still be used. It would also be easy to extend the approach to bidirectional IDE syst
in two space dimensions. This would increase the problem size and expand the precc
tioner factor based on the advection terms, but would not alter the basic methodology.

APPENDIX

Nondimensionalization of Laser Equations

Let us define a dimensionless wavelength
A =VA4IN2(L — Xo)/AX;

then the integral in (24) is

AN? Au NZALYN 2. .
/ = UO/ <A+n O)e" (i} +i;)dA.
. Ay

emband_ 4In2 Al
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SinceAx is so small, for any reasonable integration range, the second term in parenthe
will dominate. Thus we take

AXoy Moo
= —Ao/ e Maif+i,)dA.
/emband v4In2 A¢ ‘ ‘
If we now define a spectral saturation intensity

hcv/4In2-107  V/4In2
oorotE AL AL

lsat (W/C? — nm),

Isat =

and define scaled intensities by = ig‘t/isat, then the rate equation may be written

3N2 O'aNolp(t) N2

Ay
N2 _ oaolp) N2y A7 (v vy dA |
ks . tF[ +/Al eV (yf +yp)d

If we define

| p,sat —

oalr
and the dimensionless variables
t=t/tr, n=Nz2/No, and Yp = lp/Ipsat

then the first of Egs. (24) may be written

an A A2, 4 _
— =Yp(®)—1 1+/ ey, +y,)dA]|. (34)
A

ar ,

Now look at the transport equation, the second of Egs. (24). Divide both sideg,by
and write

%’EX/LC, )/EO’oNoLa, O[/EO(La, ﬂEnLC/CtF.

Then the transport equation may be written

ayE ayE )
:l:aL;—i-ﬁay—f = yne (V) — oY (35)

whereyy, is the (normalized) noise souriGg/ i s Equations (34) and (35) are the normalized
equivalent of Egs. (24).
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